Showing posts with label deriving. Show all posts
Showing posts with label deriving. Show all posts

Monday, December 6, 2010

Math and Physics ventures...

Well most likely no one will want to see this, but if anyone is interested... Today in Economics I wasn't paying attention to the teacher, but rather I was formulating and deriving the expression for moment of inertia of a hollow sphere. For those of you who don't know, moment of inertia is how hard it is to rotate something about a point or axis.

Well here we go. This probably will be really hard to understand because of the lack of symbols... sorry for the inconvenience.

int = integral; pi = pi; d = density; m = mass; r = radius; I = moment of inertia; variables = phi, theta, p;

I = mr^2

Converting to spherical coordinates and integrating we get:

I = int[int[int[mr^2,V]]] = int[int[int[(p*sin(phi))^2*p^2*sin(phi),p],phi],theta]

p = r in this case.

The tricky part was the innermost integral. I realized after thinking for a while that you can't integrate with respect to p because it is infinitesimally small and I don't need the whole radius. Therefore, I converted it into a trivial sum in order to just use the very edge. I also set up my bounds in order to account for the entire sphere.

int[int[sum[d*p(i)^4*(sin(phi))^3,i,1,1],phi,0,pi],theta,0,2*pi] where p(1) = r

Simplifying to a double integral...

int[int[d*r^4*(sin(phi))^3,phi,0,pi],theta,0,2*pi]

now some trig subs to make this integrable.

d*r^4*int[int[sin(phi)*(1-(cos(phi))^2),phi,0,pi],theta,0,2*pi]

simplifies down to:

d*r^4*int[4/3,theta,0,2*pi] = (8/3)*pi*d*r^4

We can assume a hollow sphere to only have an area: which is 4*pi*r^2
And planar density is mass over area
And now we substitute

(8/3)*pi*(m/(4*pi*r^2))*r^4 = (2/3)*m*r^2

Hooray calculus!